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Abstract

In this paper I attempt to draw a conceptual connection between the debate over natural

kinds in the Philosophy of Science and the study of clustering algorithms in unsupervised

machine learning. They are concerned with the practice of grouping objects together in two

different senses of the term “natural”. I argue that computational approaches to classifica-

tion are deserving of some philosophical reconciliation, and that they have implication for

whether or not we believe there is some sense in which natural kinds exist. I elucidate a

broad view of natural kind realism, which I argue holds a core epistemological disagreement

with conventionalism. I then discuss how several theoretical results from the clustering lit-

erature should be interpreted under this disagreement. I consider three proposed methods

for evaluating clustering algorithms as well as Kleinberg’s Impossibility Theorem, and ask

whether they offer reasons to believe that our classifications are natural in the realist sense

or merely conventional.
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1 Introduction

A fundamental way in which we understand the world is by dividing it up. Organisms

are classified as plants, animals, or fungi. Ski routes are more or less difficult if they are

blue, black, or double black. People hold different political beliefs if they are Republicans,

Democrats, or Libertarians. Classifications help us understand the world, but is there any-

thing to be said about whether some are better than others? Here are a couple examples of

what I mean.

1.1 Music Genres

I find musical taste to be one of the most frustrating things to describe. When I get asked

what I like to listen to, I’ll usually list off a couple of genres: indie, jazz, and hip hop. These

give a rough impression of the music I enjoy but aren’t entirely correct. Indie, as a genre, is

defined as music from independent artists, but I really just use the category to refer to the

“chill vibes” music I enjoy from a couple of small bands. I enjoy lots of jazz tracks, but I

also love songs that just have elements of jazz in them (which might otherwise be classified

in different genres). I also wouldn’t identify myself as a full-on hip hop enthusiast, but I’m a

fan of at least a couple of artists who fall under the category. Those three genres don’t tell

the whole story, but they give a fuzzy picture.

Another way of feeling out someone’s taste in music is to look at the playlists they listen

to. My friend has a playlist called “Lyrical Lemonade,” which is full of lyrical rap songs

by artists like Kendrick Lamar and J. Cole. The playlist picks out a pretty great subset of

rap music with memorable lyrics, interesting metaphors, and poetic messages. I’ve also seen

several versions of the “throwbacks” playlist, a collection of nostalgic 2000s and 2010s songs

like “I Gotta Feeling” by The Black Eyed Peas or Jason Mraz’s “I’m Yours.” The songs in

this category don’t share much in common other than their popularity and their place in

time, but they collectively form a category of music that is quite easily identifiable, cohesive,
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and frequently listened to together.

“Lyrical Lemonade” and “Throwbacks” aren’t proper genres the way that hip hop and

jazz are, but they seem to describe a kind of music just the same. In fact, one can be just

as clear about the music being referred to by these inventive playlists as with generic genre

labels. The following are a couple more examples of playlists, all of which span different

traditional genres and are listened to by at least 5 million users on Spotify:

Songs to Sing in the Car: 100 sing-along songs including Don McLean’s
“American Pie,” a folk rock hit from 1971, and Doja Cat’s “Kiss Me More,” a
2021 Grammy-nominated pop song.

Chill Hits: a playlist described simply as “the best new and recent chill tunes.”

Mood Booster: a collection of “today’s dose of feel-good songs.”

Each of these playlists group together songs in a pretty reasonable way. The playlists

have a theme, the songs follow that theme, and the themes are compelling enough that

millions of users listen to the playlist in virtue of this theme. In fact, “Songs to Sing in the

Car” is, by name, designed to be played while driving in the same way that one might put

on radio stations in the car (which are commonly given by genres like country or R&B).

These oddly specific playlists accomplish what widely accepted genres do—they identify a

common feature between a set of songs (that is generally accepted by listeners). Somehow,

we might still be more intuitively inclined to accept R&B as a legitimate genre over “Mood

Boosters”. To claim that “Mood Boosters” is a kind of music feels awkward and strangely

incorrect.

Here are a couple other proposals for how songs could be grouped together, if “Mood

Boosters” doesn’t feel strange enough:

Musical Key: Classify songs by which of the 12 major or 12 minor keys it is
written in.

Beats per Minute: Classify songs by their tempo, or in other words, how fast
they are played.

Both of these candidate groupings of music, as convoluted as they seem, still have genuine

reasons for their way of dividing up music. Young pianists, for example, might care to find
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songs by key if they can only play easier key signatures. Runners have reason to care about

songs in particular BPM ranges—there is evidence that the tempo of a song being played

has an effect on how fast a person runs. Neither of these classifications are arbitrary, yet

they somehow feel like the wrong way to describe kinds of music.

Are we justified in believing that certain classifications of music are better or more cor-

rect than others? Is there a reason that genres like country and pop are accepted as proper

categories of music, while “Throwbacks” and “125 BPM songs” are not? Finding an explana-

tion for what makes certain classifications “right” is difficult. There are plenty of legitimate

reasons for all sorts of groupings (as we’ve considered above). Some seem to make more

sense than others, but it’s not immediately clear that one must reflect the proper divisions

of music. Each classification has its merit, and one could just argue that there isn’t really a

right answer—there are no true “genres of music”.

1.2 The Periodic Table of Elements

Take chemical elements as another example. A common classification system is the Periodic

Table, which groups atoms by the number of protons they have in their nucleus (also known

as their atomic number). It turns out that grouping atoms by their atomic number is an

extremely useful classification for scientists. The elements participate in important chemical

properties that have stood the test of time, and it has even been shown that these proper-

ties have a periodic dependence on their atomic numbers. In fact, when Dimitri Mendeleev

first created the Periodic Table, there were several gaps where elements hadn’t been discov-

ered yet, but he was able to correctly predict some of their properties using this system of

classification.

In the same way that traditional genres of music divide songs into groups, the Periodic

Table is used to classify chemical elements. To group elements by their atomic number is

evidently useful, but could we say that it is the right way to do so? Just as we might think

there is not one proper way to divide music into genres, is there not one proper way to classify
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elements? We could just as easily group elements by the country they were discovered in,

whether or not they can be found in doorknobs, or the number of letters in their names. If

classifications are arbitrary, the Periodic Table of Elements is no better than “The Periodic

Table of Doorknobs”.

In defense of centuries of scientific progress, something should be said as to why the

former is better than the latter. The difficulty lies in what exactly can be said. It could

be argued that the Periodic Table of Elements is more useful, but I could easily come up

with a use for any of my other proposed classifications. Knowing what elements are or are

not contained in doorknobs is plenty useful for door manufacturers. If instead we argued

that the Periodic Table is better because it is endorsed by expert scientists, I would insist

that they don’t get to decide—I have just as much a right to classify them how I want.

We could then push back and say that scientists have a much better reason to endorse the

Periodic Table than we do for doorknob manufacturing, since it has been used to predict

lots of important chemical phenomena, contributing to our understanding of the world. In

some sense, the Periodic Table almost groups elements the way the world meant for them

to be grouped—it seems hardly possible that our grouping by doorknobs reflects any deep

truth about the universe. But as we travel deeper into this debate, we’ve found ourselves in

a sea of difficult philosophical problems. What does it mean to say that the world has a true

grouping? If it does, and the chemical elements are one such grouping, could the traditional

music genres we’ve used for decades be one as well?

1.3 Outline of the Following Sections

Classifications play a central role in how we think about the world. We can’t help but carve

up the different objects we see into kinds, yet we encounter a lot of trouble when we begin

to ask why or how we do so. Why do we differentiate between dwarf and non-dwarf planets,

but not between the red planets and the planets with stripes? Is green any more of a color

than Crayola’s Electric Lime? How is it that we have four seasons to a year, and not seven
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or twelve? The issue of how we arrive at classifications, as well as what they say about the

world, is one with philosophical importance. This issue has also become increasingly relevant

in the field of computer science, as there is growing popularity in utilizing machine-based

approaches to classification. In each field, the problem has come up in different ways. There

is, on one hand, the debate over natural kinds in the philosophy of science, which asks if

the way that we group particular objects reveals some underlying structure of the natural

world. There is, on the other hand, a debate concerning whether computer algorithms can

arrive at these underlying classifications of the world, unsupervised. Computer scientists and

philosophers have separately tackled the problem of classification, but I argue that there are

some senses in which they are talking about the same thing. To the extent that they are,

insights in one camp might have implications in the other. This paper explores whether

the theoretical results from classification algorithms have implications in the philosophical

debate about natural kinds.

The debate over natural kinds is concerned with what kind of knowledge is constituted

by the classifications that we make in all sorts of human thinking, from chemical elements

to musical genres. I will later spell out what the term “natural kinds” means more formally,

but to roughly introduce it: to say that a classification is natural is to say that it organizes

objects in a way that reflects the genuine way our world is organized. A natural kind is

a grouping of objects independent of human interests—it divides the world in the way the

world is actually divided, as opposed to how we might, as observers of world, associate

objects haphazardly. As I will expand on in Section 2, these debates are generally about (1)

whether these kinds exist and (2) whether we are able to obtain knowledge of them, if they

do. This section will introduce two positions on this debate in order to contextualize where

classification algorithms may be relevant..

If natural kinds are how the world is structured and all we do as human thinkers is

reveal them through our practice of classification, it seems plausible that machines, armed

with useful data, could do the same thing. Section 3 provides an introduction to clustering
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algorithms, which are a subset of unsupervised machine learning algorithms that are used to

find clusters in large sets of data points. I will explain how these algorithms approach the

task of classification, and argue that they can be thought analogously to human classification,

at least to the extent in which the disagreements over natural kinds are concerned.

Section 4 considers how clustering algorithms and the classifications that they produce

are generally evaluated. If natural kinds exist, and it is possible for us to discover them

in our own classifications, we must have a way to pick out the ones which are natural

from the ones that aren’t. This is, I argue, the role of evaluation procedures for clustering

algorithms. I consider three senses in which computationally-generated classifications can be

evaluated. Some of the conditions on which classifications are evaluated are human-interest

dependent, but the ones which are not can potentially be indicators of natural kinds. In this

section, I explain how some ways to evaluate clustering algorithms could serve as natural

kind indicators and therefore imply that there are natural kinds we could have knowledge

of. Section 5 tests this argument against three different proposals for universal clustering

evaluations, to see if the way in which they endorse classifications, in a computational sense,

is also an endorsement of them as natural kinds, in a philosophical sense.

Section 6 discusses another way that theoretical results in clustering literature have con-

sequences in the debate over natural kinds. An interesting theorem has shown that there

are three basic properties of clustering algorithms that are incompatible in combination.

I consider what this implies about the limitations of classification and how the properties

could be relaxed to defend against this seeming impossibility.

2 A Closer Look at Natural Kinds

There are various philosophical accounts of what it means to regard a classification as “nat-

ural”. As I have drawn out in the introduction, we make all sorts of classifications of the

objects in the world, and we do so for many different reasons. We not only hold different

reasons for making classifications, but we also hold different reasons for claiming that one
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classification is better than another. The debate over natural kinds in the Philosophy of

Science is specifically concerned with how we privilege certain classifications over others for

reasons of naturalness. The complexity of this issue lies in what exactly we mean by the

term “natural”.

Before I go on to explain some of these philosophical views, it will be useful to give some

strategic vision for what I am setting out to do. There are plenty of open questions about

what a natural kind is and how we come to know of them. What I am working towards is

not a resolution to these questions, but rather an identification of some points of contention

where computer classification algorithms might become relevant. Because I believe there is

some sense in which computers and humans engage in the same practice of classification,

and the natural kinds debate has thus far only been concerned with human-generated clas-

sifications, I argue that some of these philosophical problems will benefit from a discussion

of computer-generated classifications. I want to ask: what contributions can be made to our

understanding of natural kinds by thinking about classifications computationally? It would

be ambitious to argue that computational results will completely overturn and answer all

questions concerning natural kinds, but at the very least, they should complicate some of

them. Towards this end, the following section will explore a variety of views about nat-

ural kinds for the sake of contextualization, but the main consideration will be in finding

just some of their philosophical disagreements in order to make way for the discussion of

classification algorithms.

At the outset, we can frame the philosophical discussion as taking two dimensions—the

first concerns what it means for natural kinds to exist, or in other words, what we are claiming

when we claim a kind to be “natural” (this I will call the metaphysical debate). The second

concerns how we could come to have knowledge of natural kinds, which is epistemological. I

think it makes sense to first discuss what metaphysical views are available, and when trouble

and ambiguity arises, to turn over and ask how we could obtain knowledge of natural kinds,

in order to assess what our metaphysical beliefs about their existence can amount to.
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2.1 The Metaphysical Divide

There are various accounts of what it means to say that natural kinds exist. There are

generally two views—the natural kinds realist believes that there is at least some sense in

which natural kinds exist independently of human interests, and the conventionalist believes

otherwise, or that their existence is purely a matter of our interests and actions. I emphasize

that the realist believes there is at least some sense in which natural kinds exist, because

the exact sense in which different realists believe that natural kinds exist is where there is

ambiguity and disagreement. Some realists believe that natural kinds exist as a fact about

the structure of the external world, while others believe that they exist only as a fact about

the structure of human minds. Among the many versions of natural kind realism, they

also disagree over what sorts of objects have natural groupings. For example, it might seem

plausible for many realists that chemical elements could have a natural division, but it seems

less so that human created objects, like furniture or currency, could have a natural division

just the same. My point here is just to show that natural kinds realism is not so much

a singular metaphysical view, but rather a class of views that each commit to something

slightly different. This sub-section will introduce some of these views and bring out a couple

points of ambiguity in the term “natural” to demonstrate why this debate is so complicated.

As I explained earlier, my motivating goal is to frame the discussion of machine learning

literature around one core disagreement between realists and conventionalists (the disagree-

ment being epistemic success, which I will expound in Section 2.2). Since my focus will

be on this one disagreement, is it less important whether one realist view is more plausi-

ble than another, so long as they all disagree with conventionalists around this one core

issue. The implication I hope to draw is not that machine learning literature suggests a

particular version of realism, but just that some version of realism is plausible in contrast

to conventionalism. What I care about is realism in a broader sense—what are all of these

views of realism disagreeing with conventionalists over? With this in mind, the rest of this

section is meant to help bring forward this broader view of realism before drawing out their
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contrast with conventionalism in the following section on epistemology. I will first introduce

a common criterion held about natural kind realism in the philosophical literature, and as

trouble arises, challenge this criterion in order to expand to a broader position on natural

kind realism.

Anjan Chakravartty (2007) argues that a kind is natural if it is mind-independent. A

natural kind exists if it does not depend on us having thought it to exist. The mind-

independent realist believes that classifications we take as natural are those that don’t depend

on us to exist. The conventionalist, on the other hand, believes that our classifications are

all mind-dependent, meaning that they strictly depend on us, how we think about them, or

how we use them—none of them are natural.

In what sense does a mind-independent natural kind exist? If it does not depend on

our minds, it follows that natural kinds must exist external to us somewhere in the world

itself. For example, the chemical elements of the periodic table are potential candidates for

natural kinds under this realist view, since their consistency with chemical phenomena have

no dependence on what our minds think of them. This criterion generally works well for

the sorts of classifications found in the natural sciences, because the focus of domains like

physics, biology, and the earth sciences are on phenomena which we take to already exist

mind-independently, and therefore the classifications that explain them can also be taken to

exist mind-independently. 1

The trouble arises when we consider objects which we do not take to exist mind-independently,

or objects which we take to exist mind-independently, but are classified in a manner that ap-

pears to be mind-dependent. The question, in these cases, is whether there is still something

real about these classifications. I will first address the latter—is there a sense in which we

generate mind-dependent classifications of mind-independent objects, which we nevertheless

consider informed by reality? Realists take natural kinds as reflecting the natural carving

1It is worth noting here that even in these domains, there is debate over which classifications are mind-
independent. For example, species like “tiger” and “blue whale” are arguably delineated by biologists’
interest in evolutionary study.
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of the world, but there is also a sense in which natural kinds may not exist in the world

external to us, but rather as a reality of the human mind or of human nature. In this case,

the term “mind-independence” is complicated by the fact that certain kinds might only be

facts about our minds but are nevertheless real. Take, for instance, the classification of

color. It is generally taken that the world itself does not “carve up” color. Light exists in the

physical world as a spectrum of frequencies, and without the way that humans think about

color, there would be no such thing as red, green, or blue in the world itself—there is only

red, green, or blue to us. Our perception of color is a function of human photoreceptors,

which means that what we carve out to be colors is a fact about our minds.

But even so, there seems to be something real about the way we experience color. Take

Figure 1. I have proposed two classifications of the visible light spectrum. The first is a

generally held consensus on what the colors are (although they differ slightly between cultures

and languages). The second is what I consider an arbitrary division of the spectrum. If colors

are not natural kinds, at least by the mind-independent criterion that we have discussed thus

far, there is no saying whether one of these classification systems is more metaphysically real

than the other. If the realist is truly committed to the criterion of mind-independence, it

might be that there is simply not much more to say—we may prefer or take advantage of the

first system more than the second, but our preference does not amount to any metaphysical

reality. I would want to argue that, even if color does not reflect a fact about the world

itself, it might still reflect a necessary fact about our minds. There seems to be something

going on that is stronger than just a preference for one color grouping than another, whether

it be years of evolution that have trained our eyes to distinguish between reds and blues, or

maybe the coincidental fact that, somehow, languages far and wide have all arrived at words

for blue but not for the color of my pillowcase.

This is all to say that there is a sense in which this classification might be natural, even

if it does not exist in the world external to us. The study of human minds is considered

a science by many who observe it, and, if not color, there are other classifications about
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Figure 1: Two ways of classifying the visible light spectrum

our minds, such as mental illnesses or human beliefs, which seem to complicate our use of

the criterion of mind-independence. They are mind-dependent in their content, but mind-

independent in the fact that there seems to be something necessary that does not depend

on our attitudes toward them.

Natural kind realism is further complicated by the consideration of classifying objects

which only exist mind-dependently. Examples of this form include objects like “dollar bill”

and “hundred dollar bill”, or kinds in the social sciences like “conservatives” and “liberals”.

Unlike color, which classifies the visible light out in the external world, these examples

stray further into the territory of mind dependence, and it seems aimless to argue that they

reflect some natural structure to the world independently of our interests in forming those

classifications in the first place.

It is unclear where the realist should draw the line, or in other words, what is a good

criterion for capturing what are and are not natural kinds. This dilemma only gets more

muddled as we consider other examples that blur the line of mind-independence. Muhammad

Ali Khalidi (2016) gives several examples of objects where the mind-independence criterion

for natural kinds has ambiguity:
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Roentgenium: A chemical element, atomic number 111, whose most stable
isotope has mass number 281 and a half-life of 26 seconds. It was first discovered
in 1994 when a single atom of roentgenium-272 was produced in the lab by
bombarding a target of bismuth-209 with nuclei of nickel-64. Even though the
discovery was not certified at that time, in 2002 the experiment was repeated
and three more atoms were produced, and this discovery was later certified. It
may be that the only atoms of this element that have ever been produced in the
universe have been made in the lab, here on earth.

Triticale: This plant, which is a hybrid of wheat and rye, was bred to combine
the grain quality of wheat with the tolerance of rye, and is mostly used as fodder.
Like many hybrids, it is sterile, so it must be chemically treated to double the
number of chromosomes and enable it to reproduce itself, which it could not
do without intervention. This is done by applying colchicine, a chromosome
doubling agent, to a growth point of the plant.

Dog (Canis familiaris or Canis lupus familiaris): As is widely known,
dogs have been artificially selected by humans over many generations and origi-
nally domesticated from wolves (Canis lupus). The origin of the process is still
shrouded in some mystery and estimates for date of domestication vary widely,
from roughly 9000 to 34,000 years ago. Moreover, current evidence suggests that
the domestication of dogs may have occurred more than once in human history
and that some of these lineages did not survive. There is also considerable debate
over whether the process originated at human initiative or whether it was largely
the fortuitous result of certain members of the wolf species lingering near hu-
man settlements. Either way, artificial selection was eventually carried out very
deliberately, resulting in many distinct varieties, with distinct characteristics.

These examples demonstrate the difficulty in defining the term “natural kinds” by mind-

independence, because there are different ways that humans intervene in the objects of

classification, and therefore complicate whether the classifications they fit into can be taken

as natural or not. At this point, it is unclear where the criterial line should be drawn between

what can be a candidate natural kind and what cannot. As I explained at the beginning,

this debate is difficult, but what is important is just that there should, at the very least,

be a line somewhere—realists and conventionalists could not be disagreeing over nothing,

because conventionalists believe that no natural kinds exist, and realists believe that at least

some do.

I feel that there is still a good deal of ambiguity here, so I will try to do a little more

work to frame it. Some realists take natural kinds to be the classifications which exist
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mind-independently, but this requirement is complicated by the fact that there are other

classifications, like color, or objects of classification, like triticale, which we might think of

as real but don’t fit well into the commitments of mind-independence. The trouble lies in

what role we think we play in the game of classification—the conventionalist believes that

we are the sole players of this game, but the realists want to argue that some aspect of it

is independent of us. What aspect, exactly, is independent of us, is what different views

of realism disagree over. The mind-independent realist, the colors realist, and the triticale

realist might each be committed to a slightly different criterion for picking natural kinds.

Thus far, it has been difficult to draw the line in the sand, so I think it makes sense

to turn to epistemology and ask why we suspect that some of our classifications are more

than just arbitrary, and how we come to have knowledge of this. Whatever it is that

natural kind realists and conventionalists are disagreeing about on the metaphysical level,

the disagreement should also surface at the level of epistemology. In other words, if natural

kind realists think that some classifications are more than arbitrary or human-interested,

what is it about our epistemic beliefs that indicates so? If conventionalists believe otherwise,

what is it about our epistemic beliefs that fail to really demonstrate the existence of natural

kinds? Rather than taking the debate as a matter of what “natural” is and what it is not, it

may be easier to simply ask how the two views disagree in their account of epistemological

evidence, namely, what persuades us to even entertain the fact that natural kinds might

exist.

2.2 Epistemological Considerations: Epistemic Success

What is it about our classifications that makes realists think that there is something natural

to begin with? Regardless of whether natural kinds exist or not, why might we suspect there

is something real about our classifications, independent of human interests?

I turn back to the earlier discussion of the Periodic Table. When Dmitri Mendeleev for-

mulated the first iteration of the Periodic Table in 1869, there were plenty of missing elements
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which had yet to be observed. The system of classification, nevertheless, correctly predicted

how newly-discovered elements would behave. For centuries, chemists have continued to use

(and revise) this system, because it organizes atoms in a way that predicts chemical phenom-

ena consistently. The same way that scientists are more convinced of hypotheses that receive

evidential support over time, some classifications continue to be used and endorsed because

they group objects in a way that predicts how future objects, based on those groups, will

behave. It is this miracle of induction that suggests that some classifications are stronger

and possibly reflective of the way the world is really carved.

A possible motivation for thinking of some kinds as natural (as opposed to arbitrary or

human-interested) is the fact of epistemic success. Classifications which are able to help us

predict future events are the ones which are suspiciously non-arbitrary. If classifications were

simply a matter of preference, it is a wonder that they have helped us categorize diseases

to create vaccines, categorize human populations to win elections, or categorize behavior

to design widely-successful marketing campaigns. Classifications which display epistemic

success are, in other words, predictive. We can hypothesize about phenomena using these

classifications, and they tend to predict and explain how events unfold. Disease categories

predict what treatments will work, demographic categories predict how citizens will vote,

and customer segmentation categories predict what advertisements people will be receptive

to.

Epistemic success is a motivation for thinking that some classifications reflect natural

kinds, but it is not yet clear how exactly it implies that they do. Before discussing whether

epistemic success aligns to what a realist might take as “natural,” I will first explain how

it implies that certain classifications are ruled out. If epistemic success is an indicator for

natural kinds, then the classifications which cannot display epistemic success must also not

be natural kinds.2 In other words, there are certain classifications which are not predictive

at all, and if epistemic success is the reason we take certain classifications as natural, then

2This can be challenged by views of realism which do not necessarily take epistemic success to be an
epistemological indicator of naturalness.
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non-predictive classifications are certainly ruled out. There are core differences between

classifications which are predictive and those which are not. Some classifications are used to

group objects by certain properties, but there are no additional properties of those objects

that can be predicted, and therefore no possibility for the classifications to demonstrate their

predictive power. For example, consider two classifications: climbing grades, which are used

to classify the difficulty of climbing routes, and psychiatric taxonomy, which is used to classify

mental disorders. Psychiatric taxonomy is a predictive classification because the illnesses in

each category tend to be receptive to certain treatments, so the matter of how effective

psychiatric taxonomy is at dividing up mental disorders can be tested against the success of

mental health professionals in finding treatments. Climbing grades could also be considered

a predictive classification if every new climbing route can be classified well into one of the

existing difficulty categories. I argue that this is a different sort of epistemic success. The

success of climbing grades is different from the success of psychiatric taxonomy because the

categories in the latter case are used to predict phenomena which are not essential properties

to the categories themselves, while the properties of objects in the former categories are so

in virtue of belonging to that category. For instance, mood and personality disorders tend

to have particular treatments that are effective to each, but the disorders themselves are

not categorized on the basis of what treatments will be effective to them. This is not to

say that the psychiatric taxonomic system, as it stands today, is certainly a natural kind,

but that there are ways to confirm or deny its “correctness” as a kind. Its structure is not

purely dependent on how we choose to see it—we play a role in revising the classification,

but it is the success of its predictions that determines how it will evolve. In contrast, a

V5 climbing route may require certain techniques and footholds that a V4 does not, but it

is on these bases that they are classified as V4 or V5 to begin with. The category of V5

climbing routes does not predict that something is the case about the climbing routes which

belong to that category, rather, the things that are the case about the climbing routes are

17



what make them a part of that category.3 The difference between the predictive possibility

of some classifications over others is a matter of what they are attempting to predict and

whether those facts are contingent or necessary. If they are contingent, then there can be

success or failure. If they are necessary, there can only be success. A treatment may or may

not work for a mental disorder. but a V2 climbing route is necessarily climbable without

advanced footholds.

At this point, I have explained how there are some classifications which are not predictive

and therefore are not natural (under the assumption that predictive ability is what indicates

naturalness). What is left is to ask whether the ones which can be predictive are indeed

natural. There are classifications which seem to discover something about reality, because if

they were simply inventions of the mind, it is a wonder that they have served us so well in

our predictions about the world. The concern, however is whether a classification’s predictive

ability is enough to qualify it as a natural kind. Consider the following case of prediction. A

snack company comes up with two ways of categorizing their customers into user segments

for the purpose of creating targeted advertisement campaigns. They might design different

advertisements for users based on the country they live in or based on whether they are

over or under the age of 26. If the country-based advertisements in turn result in more

people buying snacks and the age-based advertisements do not, we could argue that the

former classification has correctly predicted customers’ buying habits or food tastes and

is therefore the better classification on the basis of this predictive power. The question

then, is whether this in turn implies that the country-based classification is also the more

natural classification. Does this experiment really give us reason to believe that countries is

a natural kind, and the age is not? The conventionalist could argue that neither are—the

former classification is only more predictive than the latter because we have arbitrarily chosen

3I would like to qualify this point—although climbing grades do not really predict whether a route uses
certain footholds or techniques, it may be the case that some additional properties common to each difficulty
level are discovered (for example, that V4 routes tend to stress a particular set of a climber’s muscle groups
that routes of other difficulties do not). In this case, it is possible for climbing grades to be predictive.
Whether or not a classification can be predictive is not a matter of what it classifies or how it does so, rather
it is a matter of whether it has found something to predict.
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what we are predicting. The realist, in defense, could argue that it is not that prediction

does not indicate natural kinds, but just that this example has not been predictive enough

to do so. We just need to test these user segments in more ways. If we continually revise

our classification over many years and with many experiments, as we have with the Periodic

Table, we might eventually see more of its predictive potential and be better convinced of

its naturalness.

Whether or not epistemic success amounts to an indication of natural kinds is a matter

of how we interpret the nature of epistemic success. This is where the metaphysical dis-

agreements between realists and conventionalists come apart at the level of epistemology.

As Anjan Chakravartty (2007) puts it, our epistemological endorsements for certain clas-

sifications become a kind of data for metaphysical views. He writes, “The fact that kinds

are posited to account for epistemic success ultimately places constraints on what kinds are

taken to be, because the epistemic success that some categories afford and others do not

amounts to a repository of empirical data for thinking about the nature of kinds” (4). Re-

alists and conventionalists disagree over how we are to interpret this repository of empirical

data. We have in front of us the fact that our “best” classifications are the ones that have

the highest epistemic success, and it is left up to metaphysics to then interpret and account

for what the epistemic success of those classifications mean. Do they suggest that we have

landed upon natural kinds, or is there a way to account for epistemic success as some kind

of anthropocentric trick of the mind?

Chakravartty offers two ways to account for the epistemic success of certain classifications,

one of which implies that there is something natural about them, the other of which attempts

to explain success as mere human interest. On one hand, human thinking can be thought

of as, metaphorically, a “filter” (13). Our process of picking out classifications that make

successful inductive inferences is how we come to discover natural kinds. This view takes

epistemic success as our means of triangulating on the kinds that are natural, filtering out the

ones that are not. The other characterization is that of a “lathe”—our inductive practices
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Figure 2: This is a lathe– a block of wood can be carved on it by spinning it and placing
tools against it to pick away at small pieces.

cause us to shape our classifications a certain way, and thus the classifications only exist, or

are legitimated by, the interests they serve. In other words, it is our inductive interests that

determine our classifications, not the shape of the world. The conventionalist takes epistemic

success as a reflection of what our interests are, like creating advertisement campaigns or

doing chemical experiments, rather than as a reflection of how the world is actually divided.

Realists take advertising or chemical experiments as ways of filtering down, from the broad

range of possible classifications, the ones that tell us how the world is actually divided.

Because each view disagrees over what kinds exist metaphysically, there is a difference of

interpretation over what it is we think we have knowledge of when we talk of epistemic

success.

To summarize, I have argued that out of the many ambiguities about what the realist

believes about natural kinds, a core disagreement with the conventionalist lies in how they

interpret epistemic success. The realist and conventionalist should both have an explanation

for why it is that some of the classifications we use are good at predicting things about

the world. The conventionalist argues that when our classifications get better at predicting

things, they are only better because we decide what we wish to predict. The realist adopts

the view that when our classifications get better at predicting things, they are getting closer

to catching onto a natural kind. It is not necessarily that every realist believes that epistemic
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success is enough to suggest that natural kinds exist, or that epistemic success is a sufficient

condition for a classification to be endorsed as natural. It is that, under a broad view of

realism versus conventionalism, this is at least one point of disagreement—whether epistemic

success acts as a filter or as a lathe. The following sections consider how we should think

about classification algorithms along this disagreement. What metrics are available, in the

computational sense, for demonstrating the epistemic success of a classification? Are they

better interpreted by the realist as a filter, or by the conventionalist as a lathe?

3 An Introduction to Clustering

The primary goal of this paper is to draw out similarities between the way that humans and

machines engage in the practice of classification—if our judgements about the naturalness

of human classifications should be compatible with our metaphysical beliefs about natural

kinds, then our judgements about the naturalness of machine-produced classifications should

be as well. Section 3.1 will give a brief introduction to how unsupervised clustering algorithms

classify objects, and Section 3.2 offers a defense of why they are worthy of philosophical

investigation. Section 3.2 broadly addresses how computer and machine classification can be

compared, but there are two important footnotes in Section 3.1 that address specific issues

that initially arise in my introduction to clustering algorithms.

3.1 Machine Learning

Machine learning (ML), broadly, is the study of computer algorithms that learn patterns

from data. ML techniques have varying levels of human supervision, or in other words, they

are given more or less human input in making decisions. Supervised ML algorithms are given

a pattern and asked to apply that pattern to new things—they take in data that is already

categorized, look for patterns to understand how the data is categorized, and then use that

understanding to categorize new data they haven’t seen before. Consider the task of teaching

a computer to recognize handwritten digits. We want to ask a machine to determine, from
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Figure 3: Sample image from the MNIST dataset at index 7777

an image of a handwritten digit, which number (0-9) it is. The MNIST dataset contains

60,000 images of these handwritten digits, which all look something like the one in Figure 3.

To teach a machine how to recognize these digits, we can give it a set of labeled data,

which is a set of images whose digits have already determined. Using this information,

different ML algorithms can then be leveraged to make educated guesses about unlabeled

data, that is, images whose digits haven’t been determined yet. By taking in examples of

images that have already been categorized, it can “learn” how to classify new ones.

Digit recognition is an example of an ML problem where we already know how our data

should be classified—it should fall in one of ten different buckets, one for each digit. When

this is the case, supervised ML is useful. We can give the algorithm a sense of how this

system of classification works by feeding it examples. There are other cases, however, where

we don’t know how our data should be classified, and we instead want to first figure out

how it should. For example, if we were interested in researching different types of cancer by

grouping cancer patients, we might not know exactly how many kinds of cancer there are in

the dataset, or what those kinds are.

This is where clustering algorithms come in. Clustering techniques (or at least the ones
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relevant to this paper,) fall under the umbrella of unsupervised ML algorithms. In such

cases, we don’t give the algorithm examples of how to classify the data. Instead, we ask the

algorithm to help us decide how to classify it. In other words, there is no predetermined

structure to the data that we wish to teach the machine—we want it to find structure on its

own. A clustering algorithm is a computational procedure that accomplishes this task. It

takes in some information about a set of objects as input, and outputs what it considers to

be the best way to put them into groups (or clusters). The following is an example of what

a clustering algorithm might involve.

Consider the task of dividing up the customers of a credit card company. We wish to find

a way of grouping customers into credit groups which may then help the company decide

what credit plans to offer. This is a task where the “labels,” or the credit groups, are not

decided ahead of time—we simply want to know what clusters form, and design credit plans

accordingly.

A clustering algorithm is initially given a set of objects and information about their

similarity to one another. These objects are represented as a set of data points, each of

which represents a particular customer. Each customer is differentiated by some information

we know about them (also known as their features).4 For example, take the objects labeled

A through I in Figure 4. They have the following features:

Gender: A number, either 0 for male, 1 for female, or 2 otherwise.

Children: The number of children they have.

Age: Their current age.

4If the goal in mind is to eventually argue that clustering algorithms can produce natural classifications,
it might seem suspect that the algorithm takes as input a set of features. These features seem to be
carefully chosen, and therefore interest-dependent. In fact, input features such as gender are themselves
controversially conventional kinds. I’d argue that the choice of input features may be interest-dependent,
but the classification which results is distinctly new—just because the input features are interest-dependent
does not mean that those same interests will decide the classification which is outputted. It is also a fact
of human classification that the kinds we theorize about are interdependent, and many of our classifications
cannot escape use of other systems of classification whether we take them as natural or not. For example, to
say that elements are naturally divided by their atomic numbers supposes another natural division between
the protons and neutrons in an atom’s nucleus. If human-generated classifications rely on the use of other
kinds, and we are still willing to argue that they might amount to knowledge of natural kinds, computer-
generated classifications should be granted this reliance on other kinds (or input features) as well.
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Figure 4: Initially, a clustering algorithm is given a set of unrelated data points.

Tax Bracket: A number from the range 1-7, each of which corresponds to one
of the seven federal income tax brackets.

Distance to Nearest City: The number of miles that lie between a customer’s
residential address and the nearest city.

An example of a data point, for a 25 year old male from San Jose with two children, with

a yearly salary of 50 thousand dollars, might look like this:

Person A: (0, 2, 25, 3, 42)

Aside from the set of data points, a clustering algorithm is also given information about

how similar or dissimilar the objects are.5 This is represented by a distance function, which

tells us how “far” any two data points are from each other (in some sense, a measure of

their dissimilarity). Here is an example possible distance function, taking as input two data

points (customers) x and y:

d(x, y)= 5 ∗ |xgender − ygender|+ |xchild − ychild|+ 0.5 ∗ |xage − yage|+ |xtaxbracket −
ytaxbracket|+ |xdistcity − ydistcity|

Given two data points, the distance function will compute a value to represent their

dissimilarity based on their features, which I have depicted in Figure 5. All clustering

5There is an interdependence in human notions of kind and similarity that are not captured by clustering
algorithms. It is often that we judge the strength (or naturalness) of classifications by whether or not they
group together similar objects, but it also the case that we judge the similarity of two objects in terms of
whether they are of the same kind or of a different kind. In other words, kinds are a function of similarity,
but similarity is also a function of kinds. For example, we might be inclined to argue that humans are more
similar to gorillas than to elephants because both are apes and elephants are not. We could also argue that
what justifies the category of apes is the fact that it groups together similar animals, such as humans and
gorillas. The classifications we take to be natural depend on what objects we think of as similar, but what
objects we think of as similar also depend on what classifications we put them into. Clustering algorithms
fail to capture this interdependence because they are given as input a distance function, which defines the
similarity (or dissimilarity) between objects, and clusters them after the fact. The point here is just that
more work needs to be done. The philosopher must resolve this circularity between similarity and kinds to
understand how it affects our notion of naturalness. If what the computer scientist is after is a notion of
naturalness that aligns to human thinking, they must reconcile this interdependence. It may be a reason to
find plausible clustering algorithms that don’t require predetermined distance functions.
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Figure 5: After a distance function has been determined on these data points, they will
bear a spatial relationship to one another. As an example, three distance calculations are
illustrated—each point is some distance away from every other point, which reflects how
similar or dissimilar the two objects they represent are based on the input features.

algorithms start with these two basic inputs: the data points, and a distance function. From

here, each algorithm implements a different procedure to determine the best way to group

data points. Some procedures prefer clusters where the points within a single cluster are

closer together, and some procedures emphasize clusters where the points in different clusters

are farther apart. Some procedures group the data points pair by pair, and others will guess

a couple of “central data points” and check whether the rest of the points fall around them

reasonably. Regardless what procedure is used, all clustering algorithms eventually output

one arrangement of clusters, which puts the original data points into separate groups, as

illustrated in Figure 6. The output is a classification of the customers into distinct groups

based on their background, which the company can then use to design credit plans to target

to each corresponding group.

Clustering algorithms can be used in a wide range of cases, usually where the structure

of a dataset is not obvious and needs to be revealed. For example, clustering can be used

in market research to help companies find general “profiles” that a consumer base can be

grouped into based on various features like gender, age, and buying habits. These algorithms

can also be used in medical research to help doctors determine the right way to categorize
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Figure 6: A clustering algorithm’s goal, given a set of data points and a distance function,
is to decide on the best way to group the points into clusters.

illnesses based on patient data—patients who have similar data will naturally fall into similar

groups, which can then serve as a basis for diagnosis and treatment.

Clustering seems to solve a very familiar classification problem. Given a set of individual

objects, these algorithms determine how they should be grouped, unaided by pre-existing

knowledge about groupings. One might even say that the resulting classifications, given

their lack of human supervision, arise naturally. It is in the remainder of this paper where

I investigate if there is a philosophically plausible sense of “natural” that computationally-

generated classifications really amount to.

3.2 A Defense for Comparing Human and Machine Classification

The comparison I am attempting to draw is extremely broad. Philosophers and computer

scientists are both tinkering with the idea of classification, but with possibly different mo-

tivations in mind. I am not committed to the view that these two problems are identical

or equivalent—rather, my goal here is to draw a couple of connections between them in the

hope of finding some modest insights.

Before I move forward, I’d like to put some pressure on what this paper is generally trying

to attempt, which is a comparison between two different takes on classification. The debate
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over natural kinds concerns the way that humans generate kinds, but clustering algorithms

are specifically concerned with how machines generate kinds. What I am trying to do is take

the insights drawn from clustering literature and apply them to our understanding of natural

kinds, but a concern I have somewhat downplayed thus far is how comfortable we should

be in treating these two types of classification processes (namely the human ones and the

machine ones) as equivalent. Whether or not they are equivalent seems to be a consequential

assumption, because if humans and machines have drastically different ways of generating

classifications, it would restrict the extent to which I can draw this comparison. Before I

dive too deep, I would like to put up a defense for this practice, at least in the way I intend

to take it up.

The difference between machine and human classification, in the sense that matters for

the case at hand, is what classifications they are capable of generating. In one sense, we can

think of computers as being a human-operated tool, just as a hammer or a drill, which helps

us accomplish goals that we could otherwise achieve ourselves if only at a slower and more

inefficient pace. Taken this way, there is nothing really unique to what machines are doing—

they just hold more computational power to draw out kinds that we could otherwise find

ourselves. Taken another way, machines could be thought of as epistemically superior, where

their algorithms bear a unique way of thinking that humans are not capable of even with all

the time in the world. Clustering algorithms could then be generating classifications that

humans could not comprehend, which might lead us to think that it is unfair to hold them to

the same standards, or to take what computers do and argue that we work under the same

conditions. What kind of knowledge, exactly, do the results of machine learning algorithms

constitute? What relationship does that knowledge share with the limited, rational, human

mind?

This question, even just as it relates to the project of classification, could be another

paper unto itself. I would like to diminish its importance by arguing that, regardless of

how we come to answer it, we could still make use of clustering algorithms to the extent
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that I implicate them in this paper. From a metaphysical perspective, we are concerned

with whether natural kinds exist. This matter of existence seems to not depend at all

on whether humans or machines come to know of these kinds, if they presumably hold

independently.6 In other words, regardless of what kinds we, or machines, come up with,

there is (in the realist’s eyes) a right answer to whether natural kinds exist or not. The

concern I’ve highlighted above, about how machines generate kinds, is an epistemological

one. However clustering algorithms come up with these classifications, we can admit that

at the very least, the humans who use these algorithms in practice recognize what they

generate and incorporate them into our knowledge of systems of classification. Clustering

results, even if we were to regard them as distinct from the kinds that humans generate, are

still “epistemological data” nonetheless—they are processes that we recognize as generating

classifications, and therefore realists and conventionalists should both have accounts of what

they amount to, metaphysically. Clustering is just another form of “epistemological data”.

If we use computational reasoning as one of our strategies to arrive at classifications, the

theoretical results from clustering warrant an explanation by realists and conventionalists.

We want to know if our clustering practices are better explained as a filter on natural kinds,

or if they result in groupings just because we want them to (in the manner of a lathe).

The important takeaway is just that clustering algorithms generate classifications that

humans both accept and incorporate into knowledge. Whether they do it in any manner

that is comparable to humans is less important for my purposes here, because so long as we

6It is possible, however, that machines may not come to know of all the kinds that humans could. This
depends on the sense in which we take “exist independently”. If a kind exists independently in the sense that
it exists in the world external to us, it can be argued that machines have access to the same world and can
therefore discover the same natural kinds. If it is the case that the term “exists independently” is also used
to refer to existence of mental states or conditions, there is a possibility that the natural kinds concerning
humans are not perceivable by machines. Take color as an example. If we believe that our classification of
color is a natural carving of human eyesight (but not of the world itself,) it is possible for humans to arrive at
knowledge of this carving, because we perceive through the “carved lenses” of our photoreceptors. It seems,
on the other hand, implausible that a machine could be given the visible light spectrum and instantly know
how to carve out the categories of “red,” “orange,” “yellow,” etc. This isn’t to say it is impossible—it may
be that a robot who observes humans for a long time could catch on to how we carve color, or that it can
discover the right clusters by observing which light frequencies are also crayon colors and book covers. My
point here is only that the fact of whether machines can catch on to the same classifications as humans is
complicated by our exact metaphysical commitments on natural kinds.
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take them to produce legitimate classifications, they are a part of how we find candidates

for natural kinds. We should therefore still expect whatever metaphysical picture we choose

to defend to be able to explain what it is we think we are arriving at.

4 Evaluation of Clustering Algorithms

There are a variety of uses for clustering techniques. One such use is to classify a set of data

points and draw meaning out of it.7 A credit card company can use a clustering algorithm

to group their customers, and the output of the algorithm can then be interpreted as natural

customer segments to design credit card offerings around. A doctor might cluster patients

using data about their symptoms and preconditions in order to learn more about the kind

of disease that is associated with a specific cluster.

Since clustering algorithms are used by a wide variety of people with different interests,

there is usually little consideration for how “correct” their results are. They are correct if

they serve the interests of the people who use them, whether that be to create useful genres

for song recommendation engines or to effectively cater education programs to particular

groups of children. In this way, the process of clustering is often treated like a lathe because

the classifications that form are created for and only exist by way of what their intended

use is, for humans. However, there have been several attempts to find a general procedure

to evaluate the effectiveness of clustering algorithms, which tackles an overarching problem

concerning all clustering applications. Ulrike Von Luxburg (2012) poses the question of

whether there is a universal way to evaluate clustering algorithms. Is there something to

be said about how good a clustering algorithm is, or if it gives us a better classification

than another algorithm? An evaluation of clustering algorithms is a way to endorse certain

classifications over others. The question I ask is, do these endorsements coincide with the

7There are other uses of clustering algorithms that are not as relevant for the comparison being made
in this paper. For example, clustering can be used to reduce the dimensionality of data, which means that
data points with many distinguishing features can be made simpler by figuring out which features are the
most differentiating. These uses of clustering do not take the outputs to mean anything—they serve the sole
function of making other computational tasks less intensive.
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way that realists might endorse certain classifications as natural kinds? To reiterate some

of the work in Section 2, we might suspect that certain classifications arrive at natural

kinds because they demonstrate epistemic success, and this serves as “epistemological data”

we must account for in our metaphysical views on natural kinds (the filter versus lathe

metaphor). What follows is an introduction to the various forms of clustering evaluation

available to us. I consider whether they endorse classifications in a similar manner to how

we would endorse human-generated classifications, or in other words, whether their forms of

reasoning coincide with our notion of epistemic success. If they can be taken as indicators

of epistemic success, I argue that they become another form of epistemological data on

natural kinds—it is then possible to implicate them in the debate expounded in Section 2

and investigate whether these accounts of epistemic success are better interpreted by the

realist or by the conventionalist.

4.1 Three Levels of Evaluation

It is possible to evaluate a classification at three different levels of generality—the first is

within a particular algorithm, the second is between different algorithms in a particular

domain, and the third is domain-independently. I argue that the first level does not pick

out classifications in any sense of the term “natural”. I argue that the second level picks

out classifications that have epistemic success but, due to their domain-specific context, are

better interpreted as conventional. I argue that the third level avoids this problem, but needs

to meet several important conditions in order to be consistent with a realist view of natural

kinds.

The narrowest form of evaluation is the first (Level 1). Given that we input a set of data

points to an algorithm, it returns one possible arrangement of clusters. The algorithm must

have a way to reason why it will return one set of clusters over another. This is one sense

in which a classification is evaluated—the algorithm itself is a form of evaluation because

it decides on what clustering it thinks is best for a given dataset. This evaluation is just
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a matter of the algorithm’s mathematical clustering procedure. For example, an algorithm

may prefer one clustering to another because it minimizes the total distance of points in the

same cluster and maximizes the distance of the points in separate clusters. At this level,

one classification is chosen over another without any consideration for the actual problem to

which it is being applied. This kind of evaluation doesn’t help us on the matter of judging

whether classifications should be taken as natural, mainly because it doesn’t concern how

the classification is going to be used which means it has not yet been tested inductively. An

algorithm can (and will) choose a classification, but it is not at this level that we have really

committed to saying that the classification is meaningful or good in any sense, especially in

the sense of epistemic success.

The next level of generality (Level 2) is evaluating different algorithms against each other

in the context of a domain. At this level, we have an interest in mind when using clustering

algorithms—they should give us classifications that will be helpful for a particular task.

Suppose a data engineer at Spotify is asked to use clustering algorithms to improve their

music recommendations. The engineer might try several different clustering algorithms on

the music that a user has listened to a lot, generate genres around them, and then recommend

new music based on those genres. The algorithms will each return some set of clusters, which

is an example of each algorithm making its own Level 1 evaluation. At the second level, the

engineer will have to evaluate which of these algorithms provided the most successful genres

for recommending new music to users. Here, inductive success plays a factor. The engineer

will be able to see, as time goes on, which newly recommended songs were listened to more

and which genres were used to recommend those songs. The clustering algorithm which

produced those genres might then be endorsed for choosing classifications which are more

predictive of a user’s music taste than others. Through this process, there is a way to evaluate

different clustering algorithms in terms of how they succeed in a given domain.

This kind of evaluation and endorsement of classifications is more relevant to our com-

parison to natural kinds, because it is at this level that we begin to favor classifications with
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epistemic success. We endorse clustering algorithms, or (to draw out the terminological con-

nection) endorse inductive practices, on the basis of their track record of consistency with

phenomena, which varies from application to application. In one case, the phenomena might

be the attraction of new listeners to playlists, in another it may be the advances in the study

of new disease categories. Clustering results can have epistemic success, which might lead

the realist to wonder: do these algorithms arrive at candidate natural kinds? We could be

led to believe, at this point, that clustering algorithms serve as a kind of filtering mechanism.

They pick out natural kinds through a process of inductive testing. We see which classifica-

tions are predictive and which are not, and through many iterations, we slowly triangulate

onto the kinds which reflect the way the world is structured.

What is troubling, though, is that our methods of evaluation are still contextualized to

a particular practice or domain of usage. How we judge the epistemic success of clustering

algorithms differs from field to field. It is true that we are guided by something stronger

than simply a mathematical preference for one classification over another, since they must

stand the test of induction, but it is still humans who set these inductive interests to begin

with. The conventionalist has reason to push back and argue that the clustering results we

take to be predictive are still just legitimated by our interests and could still be otherwise—

the classifications did not “exist” independent of us, and it is our human interests which

determine the shape of the wood on the lathe and therefore what it is our algorithms are

carving around.

Rather than pushing back on this point about whether domain-interested (Level 2) eval-

uation procedures can be made consistent with natural kind realism, I think there is still

another path yet unexplored. This brings me to the third and most general way that people

have attempted to evaluate clustering algorithms, which is in a domain-independent man-

ner. These evaluation mechanisms attempt to distinguish good classifications from bad ones

without regard for what the results will be used for. They will argue for a way to judge

the quality of clustering algorithms and their results in a universal way that applies to any
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and all algorithms. I hope to build a clearer picture of what this entails in the next sec-

tion, where I attend to some concrete examples of these evaluation mechanisms. For now, I

want to start a broader discussion of, if there are universal clustering standards, what the

implications would be in our debate about whether classification algorithms work as filters

or lathes. I hope this will give some initial sense of what we could conclude about these

evaluations, or what they would need to have in order to be interpreted as either a filter or

a lathe. It will become apparent that each of the specific attempts at universal evaluation

will lead us to slightly different ways of thinking about realism and conventionalism.

4.2 Domain-Independent Clustering Evaluation

A domain-independent (Level 3) clustering evaluation procedure will ideally give us a way

to distinguish good clustering algorithms from bad ones, without having to appeal to the

domain in which they are used. I argue that if this is successful, the realism interpretation is

more plausible—the existence of these evaluation standards seems better accounted for by the

view that we are discovering natural kinds rather than the view that we are inventing them

through anthropocentric interests. I will first try to explain why a Level 3 evaluation would

be incompatible with the “lathe” theory, which may help motivate a second explanation that

attempts to account for this in “filter-realist” terms.

To reiterate, we take the lathe account of natural kinds to be saying that the classifica-

tions we endorse by epistemic success are not natural kinds, because all classifications are

conventional. In other words, they take the shape that we are interested in seeing them take

rather than the shape that exists in the world. They come about because of the purposes they

serve us. From this position, it seems implausible that we could come up with a general justi-

fication for the classifications we endorse—the conventionalist argues that the only reason we

could make such an endorsement to begin with is because they align to specific interests. If

clustering algorithms produce different candidates for natural kinds, and a Level 3 evaluation

procedure judges these algorithms regardless of their application to any particular domain
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of human interest, it must be judging these classifications in an interest-independent sense.

Our evaluation gives us a set of classifications that we can endorse without a domain-related

justification. How, then, could these classifications have come about in a conventional way?

A domain-independent evaluation metric gives us a kind of epistemological data that seems

incompatible with conventionalism. It seems that we have stumbled upon a way to pick out

classifications that sidesteps the worry of how they align to our domain-related interests.

Domain-independent clustering evaluations seem to put pressure on the conventionalist,

but I would like to frame this argument more positively in terms of compatibility with a realist

account of natural kinds. As posed earlier in Section 2, the realist interprets epistemic success

as a way of indicating to us which of our classifications are better fit to understand the world,

and are therefore triangulating onto natural kinds. But as drawn out from the snack food

company example, inductive success is not enough to call our classifications natural—some

classifications are only predictive about certain things. In addition, some classifications have

been more inductively tested than others. The snack food company used a country-based

classification to predict consumer buying habits, but a classification like the Periodic Table

has arguably more epistemic success because it has been used to predict countless chemical

phenomena for hundreds of years. The realist is in search of an indicator of naturalness that

is over and above epistemic success—the classifications cannot just be predictive for specific

inductive interests, and we must also be able to measure how some classifications are more

or less predictive than others. Level 3 evaluations satisfy this first requirement. Because

they are domain-independent, they can judge a classification without regard for predictive

interests we have in mind. Level 3 evaluations should also satisfy the second requirement.

They must be able to measure, across all classifications, the degree of epistemic success.

Because these evaluations are universal, they can judge any and all clustering algorithms

and outputs, which gives us a universal measure. The question is whether that universal

measure is tracking epistemic success.

The problem is this. Level 2 evaluations capture the important requirement that we have
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set out thus far, which is that our best candidates for natural kinds should be predictive.

By applying algorithms in a particular domain, we can tell which of the classifications we

generate carry more or less epistemic success. The worry is that epistemic success, at Level

2, is contextualized to particular domain interests, which means that they are only good at

predicting the things we want it to predict. Level 3 evaluations seem to solve this problem

because they endorse classifications domain-independently, but how do they capture the

notion of epistemic success without regard for a particular domain? In other words, we

cannot endorse classifications that only serve particular inductive interests (because they

would be taken as conventional), but we also cannot endorse classifications that do not have

inductive success at all, because such is the motivation we have for thinking classifications

might be natural in the first place. There are a couple ways for us to deal with this inductive

consideration.

We can take Level 3 evaluations as a way to filter our Level 2-endorsed classifications.

In this way, Level 3 evaluations are still endorsing classifications domain-independently, but

the classifications must first pass the test of a Level 2 classification, namely that they have

proven some level of epistemic success within a particular domain. By adopting a two-tier

evaluation, we can guarantee that we only endorse classifications that are well suited to

our inductive interests, but in addition, we do not necessarily endorse them solely by these

inductive interests. We pick the ones that not only succeed in their domain, but also satisfy

a more universal evaluative standard. Under this view, Level 3 classifications do not need to

consider epistemic success, because it is Level 2 classifications that first filter classifications

that meet this requirement. The problem, though, is that we are still missing a way to

measure the degree of epistemic success if we only consider epistemic success at Level 2. For

example, two different domain-specific evaluation procedures might endorse our snack-food

company’s country-based classification and the Periodic Table, but if a Level 3 evaluation

procedure has no way of comparing one classification’s inductive success to another’s, it

might arbitrarily choose the former classification over the latter, even though it is part of
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the realist’s view that classifications with more epistemic success should be more indicative

of naturalness. Our Level 3 evaluation procedure must not only be universal in the domain-

independent sense, but should also be universal in the sense that it gives us a universal

metric of epistemic success. Otherwise, there is no way to judge the predictive strength of

one classification over another.

In order for us to plausibly interpret Level 3 evaluation procedures as picking out classi-

fications in a realist manner, they must offer a way to judge the degree of a classification’s

predictive strength, and therefore the degree to which we believe it to be natural. The

realist is in search of a Level 3 evaluation that does not only endorse classifications domain-

independently, but also tracks and measures some notion of epistemic success. In the next

section, I consider three different proposals for Level 3 evaluations. For each, I will ask

whether it satisfies the requirements necessary for us to take it as epistemological evidence

that is more plausibly interpreted as filtering natural kinds than creating merely conven-

tional classifications. Namely, the evaluation should be interest-dependent, and it should be

able to measure and discriminate between different degrees of epistemic success.

5 Proposals for Domain-Independent Clustering Evaluation

At the most general level, there have been several attempts to propose a method of evalu-

ating, roughly, the “good-ness” of classifications outputted by clustering algorithms. What

we are looking to do is consider whether these evaluation standards are better interpreted as

picking out conventional classifications or natural kinds. The following are three proposals

for evaluation that Luxburg (2012) expounds.

5.1 Benchmark Datasets

The quality of a clustering algorithm can be tested by running them on datasets where

we believe we already have the “right answer” to. The idea of evaluating on benchmark

datasets is to pick out a couple instances of classification where we are fairly certain about
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how things should be grouped to see if the clustering algorithm in question will arrive at

the same grouping. For example, if we have a group of images that are either pictures of

cars or of other random objects, we are fairly sure that the pictures of cars should be one

of the outputted clusters. We can then take this dataset to be a benchmark and run all of

our candidate clustering algorithms against it—the ones which correctly group the cars will

be endorsed, and the ones that group them in some other way will not. These benchmark

datasets can be decided by field consensus, but will generally be cases where there seems

to be a “correct” grouping. In other words, we test how well our algorithms find our best

natural kinds candidates, and if they do well, we endorse the other classifications that those

algorithms generate.

This appears to be a reasonable way to evaluate clustering algorithms. If they perform

well in instances where we know how things should be classified, we will expect that they

should similarly perform well in instances where we are not as certain. The status of bench-

mark datasets is similar to, in scientific realism, the idea of our “best scientific theories.”

These are the theories which have accurately explained evidence and predicted new observa-

tions time after time, so often that we hold them to high epistemic regard as being candidates

for yielding genuine knowledge of the world. These theories are often the ones we use to rea-

son about other theories that we are less certain of—scientists are more inclined to explore

hypotheses that are consistent with the best theories out there so far, since the hypothe-

ses that contradict them are less likely to be confirmed. Similarly, if we choose benchmark

datasets that reflect the classifications we take, so far, to be our best candidates for natural

kinds, the clustering algorithms we endorse will be ones that consistently produce groupings

compatible with them. For instance, chemical elements are taken to be one of our best

candidates for natural kinds, because so many of our theories make good use of them and no

other alternative for grouping atoms has been nearly as predictive. Consider a benchmark

dataset comprised of various data points which each represent atoms, with their various

properties contained as features. If a clustering algorithm were able to correctly group these

37



data points by their number of protons, we would think the algorithm has arrived at the

“correct” grouping. If the same algorithm performed well on other paradigm examples of

natural kinds, we could be convinced that the algorithm has generally found the right way

to reason about kinds and can be used to bring more clarity to datasets we don’t yet know

how to classify.

An initial problem with this procedure is that it assumes that algorithms that perform

well on some datasets will also perform well on others, which may not be the case. It

might happen to “answer correctly” on our benchmark datasets, but when applying the

same lines of reasoning to others, it may answer very poorly. A more pressing problem,

though, is that it seems to select classifications in an interest-dependent way. In some sense,

this procedure evaluates algorithms domain-independently, since it grades them on a general

set of benchmark datasets, but these datasets themselves will lie in particular domains,

which means that the algorithms we endorse will tend to work well for the domains included

in our benchmark. As mentioned in the last section, it is also important that a Level 3

evaluation measures whether some classifications are more or less inductively successful, but

an algorithm’s ability to classify benchmark datasets properly does not necessarily mean

that the classifications it produces are predictive in any way.

This first proposal falls short in a couple of places, partly because it depends too heavily

on how we regard classifications we already take to be “natural” and not enough on the

actual algorithms themselves, which gives no guarantee on how well they perform on new

datasets.

5.2 Convergence

David Pollard (1981) proves that the k-means clustering algorithm converges almost surely

as sample sizes increase. The k-means algorithm refers to a clustering technique where the

number of clusters is given beforehand, as a parameter k. For example, a k-means clustering

where k = 5 will find a way to cluster data points into 5 different clusters, where each cluster
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Figure 7: As more and more data points are sampled, an algorithm that converges will
eventually find clusters that align to the underlying distribution of the dataset.

is defined by some “central” point inside of it. The result from Pollard shows that as you

continue to draw new sample points from the same distribution, the algorithm will converge

upon a clustering almost surely. “Almost surely” is a probabilistic term, which roughly refers

to a form of convergence where the result of the clustering algorithm will start to look like to

the underlying distribution of the data. The k-means algorithm is shown to eventually settle

on a set of clusters that, as the number of data points gets larger, matches the underlying

distribution of the dataset. I have illustrated an example in Figure 7.

This procedure of evaluation is, then, just to ask whether a clustering algorithm converges

or not. If it can be proven to converge, we endorse the classification. Convergence avoids

some of the pitfalls of benchmark datasets. It seems to be truly domain-independent, because

it is not up to us whether or not the data converges—it will uncover whatever is true to

the nature of the dataset. If a clustering algorithm converges on a classification, we cannot

simply alter it to our interests. It can only ever converge on whatever distribution is true to

the data points that are drawn.

The question that remains is if convergence captures some notion of epistemic success,

and whether it does so in a way that is more compatible with the realist or conventionalist

interpretation. If a classification converges, it tells us that as more data points are added,
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they will start to consistently fall into the same groupings. This suggests that the the classi-

fication is predictive—if we can prove that it converges, it means our classification will slowly

align to the underlying distribution of the dataset, and we can therefore become increasingly

certain about where the data points will fall. The classifications that converge seem to also

be the ones with epistemic success, but where the problem lies is that convergence cannot

judge degrees of epistemic success.

Convergence is an absolute measure—an algorithm either converges, or it does not. This

evaluation procedure is a fact about a mathematical limit, which means that classifications

are either proven to converge or proven to not converge. Because it is absolute, there is no

sense in which, under this evaluation, one classification is more or less predictive. In fact,

convergence implies that the algorithms which converge are certainly predictive, meaning

that as we take in more data points, we can be almost sure that we have landed on the

underlying structure of the dataset. If the realist is just looking for a way to judge whether

one classification is more predictive than another, in a relative manner, how did we land on

something stronger? It seems implausible that we could even say something stronger about

our classifications. Given that we generate classifications within the limited inventory of

human experience, it seems that we could not say absolutely that our best classifications

are indeed natural kinds, just that they are more likely to coincide with natural kinds than

others. Our process of generating kinds is only so much as a game of induction, the same

way that science is—we can be optimistic about our best scientific theories, but there is

always the possibility that they are wrong, because we can only theorize with the inventory

of limited human experience. Convergence seems to endorse classifications in a way that has

transcended epistemic limits. What then, is the problem with how we have taken the fact

of an algorithm’s convergence?

The main underlying problem is that Pollard’s proof of k-means convergence assumes as

a given fact that our data points are drawn from an underlying distribution. What we are

taking as fact is that such a distribution does exist and showing that a k-means clustering
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algorithm converges upon it. What we don’t have, but what we want, is the implication in

the other direction—that an algorithm whose clustering output converges implies that an

underlying distribution exists. The notion of convergence does not cohere without a given

distribution that points are drawn from, but what we are looking to use convergence for is

to ask if such a distribution exists at all. We are somewhat misusing the idea of convergence

to make realist implications that were already assumed to be there.

Another limitation of convergence is that it has been shown only for k-means clustering

algorithms, a subset of clustering algorithms where we decide beforehand how many clusters

we wish to group the data points into. This assumption does not seem natural by any means:

how could we be sure that the natural world is split into any particular number of kinds?

The number of clusters, k, is human input that is taken as information for k-means clustering

algorithms to produce classifications. The results, even if they were to converge, assume a

structure to the data that we cannot be certain actually holds. A given algorithm may only

converge if we decide it should output 5 clusters, but it would be wrong to imply that we

have therefore discovered that there are naturally 5 kinds. It may be that the natural world

is carved into 11 kinds, but if k-means algorithms do not converge at k = 11, convergence

would not be a good indication of what is natural.

To summarize, convergence is an evaluation procedure that endorses classifications that

provably arrive at a dataset’s underlying distribution. It is better than benchmark datasets

because it reflects a domain-independent fact about any clustering algorithm, but it fails

to plausibly suggest that the classifications it endorses are natural, because it assumes that

there is a natural division to the objects it classifies in the first place. Lastly, I will ask

whether the metric of stability solves these problems—whether or not it can capture the

notion of epistemic success domain-independently (in the manner of a filter,) and measure

relative degrees of predictive strength.
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Figure 8: A stable clustering is one that maintains its clusters even as different data points
are taken into account. The example above illustrates a cluster that is stable over two halves
of the dataset.

5.3 Stability

Stability is a measure of how much a cluster changes based on what data points are used

in generating it. For a given algorithm, we can perform clustering multiple times, each on

a different set of data points. A stable result is one in which the resulting groupings do not

change much from one set of data points to another. In other words, the algorithm should

maintain the same clusters even as we fluctuate what data points we feed into it. This is

illustrated in Figure 8.

There are several ways that clustering stability can be tested (Luxburg 2010). We might

choose to run a clustering algorithm on a random half of our dataset, run it again on the

other half, and then see how closely the two clusters resemble each other. We might also

choose to initially cluster on all of the available points and see how much the results change if

we only provide the algorithm smaller subsets of the data. In all cases, the general principle

remains the same: a stable clustering will commit to more or less the same groups even as

we alter, remove, or add data points into consideration.

Stability is strong on the issue of domain-independence. It describes a generic property of

the algorithm’s output, as opposed to how benchmark dataset evaluations use a particular
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choice of classifications to grade algorithms against. The property of stability does not

depend on how we think of it in any particular domain, since it refers to simply how well

a grouping can accommodate data points, a fact that applies to any and all applications of

clustering.

Stability also captures the requirement of epistemic success. What we want is for the

classifications that we endorse to explain past events and to hold consistent for future events.

If we take past events to be the data points we already have, a clustering algorithm that

produces a stable result will explain them well because it is on that basis that it arrives

at its clustering in the first place. Although it cannot be said what new data points might

be generated, the fact that a stable clustering can withstand varying data points seems to

suggest that it will be consistent as new points come along. Otherwise, we would simply say

that it is not a stable classification.

Stability is also strong where convergence is not—it is a relative metric, because certain

clustering results can be more or less stable based on how many data points it remains stable

across. This gives us an evaluation procedure which can judge, between two classifications

that both display epistemic success, which of them is stronger. Because stability is a relative

metric, it suggests a version of natural kind realism that admits to “degrees” of naturalness.

We can take this two ways—it either means that there are varying degrees to how certain

we can be about our classifications, or that natural kinds themselves only exist in degrees

of reality. This is a distinction between degrees in an epistemological sense, and degrees in

a metaphysical sense. The latter sense is more difficult to defend and to make sense of, but

it seems compatible to at least argue for the former, that our epistemic beliefs about what

the natural kinds are admits to degrees, just as our best scientific theories are only the best

because we take them with higher degrees of certainty than other theories.

Is stability, as a metric of epistemic success, better interpreted as a filter or a lathe? The

key strength of stability is that it endorses classifications which do not vary based on the data

points it is created from, or in other words, the observations that it takes into account. A
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stable clustering should maintain its structure even if we were to give it a different subset of

objects in the dataset—the resulting classification is only loyal to the underlying structure of

the dataset (if one exists). If natural divisions exist, then the data points that are generated

will also have some natural tendency to fall along those divisions, and stability will be able

to detect when this tends to occur. If different sets of data points all seem to conform to one

stable clustering configuration, it would suggest that there is some natural division that lies

underneath them. Stability seems to filter out human-independent classifications because

if they were merely conventional, the data points would never cluster in a stable way since

there is no necessary “shape” which they should stabilize to—it would be possible for one

subset of the data points to cluster one way, and another subset of data points to cluster in

another way. 8

Another way to put this is that the conventionalist lathe seems to imply that the group-

ings we create are self-interested because of the motivations we have for using them. A stable

clustering is resistant to these interests, since it withstands the variability of the data points

we take into account. It does not “decide” to be stable or unstable based on what shape we

want the groupings to take. It will be what it is, solely as a function of all the data points

we test against it at any point in time. It operates as a filter by rejecting unstable groupings

in favor of what naturally arises from the tendencies of any and all data points that are

considered.

Out of the three considered, stability seems to be the universal clustering evaluation

metric that most plausibly suggests that natural kinds exist because it picks out arrangements

of clusters that, when given one set of data points, are predictive of how other data points will

8As I’ve outlined earlier, my discussion is contextualized by a broader view of natural kinds realism that
is only committed to the idea that natural kinds exist, even though different metaphysical views disagree
over which of them do. Stability only endorses classifications that remain stable over time. Whether we
think it picks out natural kinds is complicated by what types of classification we think are natural. For
example, certain classifications of humans may be useful for social scientists in predicting future behavior,
but as migratory patterns or other social phenomena affect humans, their classifications will also evolve. A
stability evaluation will discriminate against these kinds of classifications because their underlying tendencies
will change (and therefore their clustering will be unstable), even though they are nonetheless valuable for
certain predictive interests, and under certain views of natural kind realism, may still be considered natural
kinds.
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fit. Stability is a way to capture the idea of prediction without being tied to any particular

domain interest, and domain interest is what the conventionalist thinks that prediction

can only amount to. I think there is still room to push back and interrogate whether

stability really does capture prediction in all the senses that we normally take prediction

in science and everyday life. This requires a deeper philosophical investigation into what

prediction precisely means—what counts as evidence of an accurate prediction, what counts

as prediction or merely self-confirmation, and what we mean when we judge one classification

to have more epistemic success than another.

This concludes the sections that discuss clustering evaluation procedures. To summarize,

evaluations by benchmark datasets fail to be truly domain-independent, and the property of

convergence implausibly implies that there are classifications which we certainly know to be

natural. Stability offers a way to capture the idea of epistemic success of classifications in

a domain-independent way, and it also gives us a way to judge the degrees of our epistemic

certainty of natural kinds. Thus, stability is the most compatible with a realist interpretation

of epistemic success, although this can be further tested by clearing up what should be meant

by epistemic success or prediction. The next section looks at a different theoretical result

that doesn’t necessarily have to do with evaluation, but nevertheless asks if there is a limit

to what clustering algorithms can discover about natural kinds.

6 Kleinberg’s Impossibility Theorem

As a consequence of the broad array of use cases for clustering (and therefore the broad

array of implementations of clustering algorithms,) there has been a large deal of ambiguity

about how we could reason about these algorithms in a general way. Evaluation is one

attempt to solve this problem, but yet another way to generally reason about clustering

algorithms is to formalize the task of clustering and to ask if there are any basic facts that

hold true of all clustering algorithms. Jon Kleinberg (2003) finds an interesting result, which

is that, given three basic properties which we intuitively hold to be true across any and all
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clustering algorithms, it is provably impossible to satisfy all of them at once. This is proven

by assuming any two of these properties, and mathematically deducing that satisfying the

third is impossible.

This brings out a surprising limitation of clustering, which is that any algorithm will have

to sacrifice one of these three basic properties, and that clustering necessitates trade-offs.

This section will look at what these three properties are and what they mean in relation to

our more general notions of human classification, to ask if the computational impossibility

that Kleinberg proves is also a human, epistemic impossibility when it comes to our ability

to discover natural kinds (if we take them to exist).

6.1 Scale Invariance

The first of these is a property that concerns the relationship that holds between any two

data points. This relationship is encoded in a clustering problem as a distance function.

To reiterate, a distance function takes as input the features of each data point and returns

a number that represents how “far” they are from each other. A clustering algorithm is

considered scale-invariant if it returns the same clustering of a set of points even if we were

to scale all distance values between points either up or down (as illustrated in Figure 9). For

example, if we have several data points whose closeness measures fall somewhere between

0 and 10, we should be able to multiply each of their distances by 5, and a scale-invariant

clustering algorithm run on these points should return the same clusters.

Scale-invariance should hold for clustering algorithms because it holds for the way we

normally produce classifications. There is no particular “scale” to which we think about the

relationship between objects. In human terms, objects simply can be more or less similar

to one another, at least as far as we are concerned with in discussing kinds. We take it

that objects which are more similar should be in the same cluster, and objects that are

more dissimilar should be in different ones. If distance functions encode this similarity

relationship, they should hold for any scale—distance is only a numerical representation of
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Figure 9: Scale invariance is satisfied if an algorithm returns the same clustering, even as all
the distances between points are scaled up or down.

what is otherwise a comparative metric by human terms, so if these numbers were to scale

across the board, they should not change how the objects are grouped.

6.2 Consistency

Consistency is the second property we take as desirable for clustering algorithms. The basic

idea is this: for a given clustering result, if we shrink the distances between points in the same

cluster and expand the points between different clusters, we should get the same clustering if

we run the algorithm on these revised distance measures. To put it another way, we should

be able to push the points inside of a cluster closer together and the points outside of a

cluster farther apart, but end up with the same result (illustrated in Figure 10).

For similar reasons as scale-invariance, this property should necessarily hold for any

general process of classification. If distances are being shrunk within clusters and expanded

between clusters, we are only “committing harder” to the similarity beliefs we had to begin

with. Objects in the same cluster are now considered more similar to each other, and

objects in different clusters are considered more dissimilar. It shouldn’t be the case that,

in human classification processes, such a revision would motivate someone to decide that a

object belongs to a different clustering—if anything, it should make us more certain of the
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Figure 10: Consistency is satisfied if an algorithm returns the same clustering even if points
within a cluster are moved closer and points between clusters are moved farther apart.

categories we initially started with.

6.3 Richness

The final property is richness. It roughly says that any possible arrangement of clusters

could be outputted for a given distance function between a set of points, as illustrated in

Figure 11. This isn’t to say that every possible clustering must be favorable or practical

(in a loose sense) in some way, but just that no possibility has been structurally excluded

from consideration. If we could play around with the distance measures between points, a

clustering algorithm should theoretically be able to output any arrangement of clusters—

this includes groupings where every point is its own cluster, every point is part of one large

cluster, any point can be clustered with any other point, etc.

In general terms, what richness holds is that no structure of the data should be out of the

question—that our algorithms should be open to any and all possibilities. Our algorithms

should only choose one grouping of objects over another for reasons of the perceived similarity

between them. If we are potentially in search of natural kinds, we should maintain richness

as a property. We don’t have certain knowledge of the structure of the world and how it

is divided, so our epistemic practices for discovering kinds should also maintain that any

48



Figure 11: Richness is satisfied if an algorithm is able to return any of the possible arrange-
ments of the same data points, given the right distance function.

structure is epistemically possible. There is always the chance that future observations will

lead us to revise and generate new arrangements of clusters, so to foreclose that possibility

would be an unmotivated limitation.

6.4 From Impossibility to Possibility

As much as it seems that scale-invariance, consistency, and richness are all fundamental

properties that should hold for our practices of classification (and therefore the clustering

algorithms we use along the way,) Kleinberg has proven that no single algorithm can satisfy

all three of these. How are we to deal with this impossibility?

We could initially just argue that Kleinberg has abstracted the task of machine-based

classifications in a way that does not also abstract human-based classification, in which case

impossibility serves as only a constraint on the former and not the latter. Kleinberg’s result

is theoretically true for clustering algorithms, but it might just mean that computers are

“weaker” classifiers than humans. It goes back to the overarching comparison problem that

I touched on earlier—computers and humans are different epistemic agents when it comes to

generating kinds. Kleinberg’s Impossibility Theorem might lead us to think that we should

just be more pessimistic about whether machines can arrive at natural kinds, but it still
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remains a possibility that humans may not be subject the same impossibility constraints.

Where the problem lies, then, is in the fact that we haven’t properly formalized clustering

algorithms such that they can fully replicate how we, as humans, generate kinds.

But given the more intuitive explanations I provided in the above subsections, I maintain

that each of the constraints seem to not only hold for algorithms, but hold true for human

reasoning about classification, at least if want to remain consistent with the realist possibility

that we can discover natural kinds. So I pose the question: what if we are indeed subject to

the same impossibility constraints? Where can we find wiggle room in these three properties

where we would still be able to make classifications, and more importantly, do so in a way

that could be thought of as discovering natural kinds?

Richness is where we could push back a bit. First, it seems that we might be able to

structurally exclude trivial classifications, namely the output that assigns each data point

into its own cluster, or the output that clusters all of them together. Each of these are

somewhat meaningless classifications, because they don’t create any division between the

objects. They might be a valid output for a clustering algorithm, but to the extent of how,

and more importantly, why we generate classifications in the first place, they wouldn’t be

meaningful results. We care to find classifications where multiple objects participate in a

single grouping, and at the same time, at least two distinguishing groups are meaningfully

categorized apart from one another. This is one way we could reasonably violate the third

property.

In a less trivial way, we could also just concede that some of the possible classifications of

our objects should be excluded. As exemplified in the k-means algorithm, one way they could

be excluded is if we specifically require that the data points settle into a certain number of

clusters. A question remains as to whether this would prevent us from being able to uncover

natural kinds, if we are admitting to, by our own volition, excluding some structures of

the data from being possible outputs—the ones we exclude might just be the natural way

to classify the objects (if one does exist), in which case we have prevented ourselves from
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discovering natural kinds. In defense, I argue that this concern can be distinguished from our

other conventionalist concerns. Violating richness only admits to influencing the structure

of our resulting classifications, but if, by some viable evaluation procedure, we still find that

the classifications we endorse have epistemic success, it may just be the case that the natural

world also happens to not align to the sorts of clustering structures that we have ourselves

excluded. This can be accounted for in a revised picture of filtering. The fact that we violate

richness implies that the filters we have are imprecise, and that some of the natural kinds

which exist cannot be discovered because of assumptions we make about which clusterings

are possible. But an imprecise filter, in this sense, only implies that some natural kinds won’t

make their way through it—it does not admit conventional classifications to “leak through”

(because they would not be endorsed by an indicator like stability). We can still be realists

about the classifications that we endorse, it might just be that there are some natural kinds

that we miss out on because we have violated richness. We are simply forced to admit to our

epistemological limitations, namely that we will not be able to uncover all of the different

natural classification structures that exist in the world.

7 Conclusion

I want to now summarize the work I have done in this thesis and briefly discuss some lingering

questions. The broader intention of this paper has been to draw a conceptual connection

between the philosophical debate over natural kinds and the theoretical work concerning

unsupervised clustering algorithms. These two problems are generally concerned with the

same practice of classification—we take a set of objects, and on some basis, sort them into

groups.

The philosophical question that arises from classification is whether there is a natural way

to group these objects, and if so, whether it is possible that our practices of classification,

whether in the sciences or in every life, might allow us to discover them. The realist believes

that there is a natural way to group these objects, and the conventionalist believes that there
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is not. There are many ways to understand what the term “natural” means, as well as what

criterion holds for a kind to be considered natural. As a result, there are many versions of

natural kind realism, each of which is committed to a different metaphysical view. I have

argued, however, that in a broad sense, they all disagree with conventionalists over at least

one thing: epistemic success. It is a wonder how some of the classifications we make fare so

well with new information—as we gather more data about objects, they continue to conform

well to classifications we have already made with them. The realist, who believes that natural

kinds exist (in at least some broad sense) will argue that these classifications reflect the way

things must naturally be grouped if it can predict how new information will conform to it.

The conventionalist might instead argue that what we have taken to be prediction is really

just self-confirmation. In other words, the classifications that succeed only do so because

they succeed at what we want them to. I used Chakravartty’s metaphor of a filter and a

lathe to elucidate this difference in interpretation.

We take epistemic success to be a virtue of our best classifications, and the realist and the

conventionalist disagree over whether we should take this as indication of some notion of nat-

uralness or not. It is here that the computational question of classification becomes relevant.

Clustering algorithms are another way that humans generate classifications of objects (as I

have argued in Section 3.2). Is there a way to know if the classifications they output have

epistemic success? If they do, is it better interpreted from the realist or the conventionalist

angle? In Section 4, I introduced three different ways that clustering algorithms are eval-

uated, and argued that the sort of evaluation procedure that can be universally applied to

clustering algorithms domain-independently is the most plausibly consistent with a realism

interpretation of natural kinds. In Section 5, I discussed whether three particular proposals

for this form of evaluation live up to this standard. Evaluations by benchmark datasets fail

to be truly domain-independent, and the property of convergence implausibly implies that

there are classifications which we certainly know to be natural. Stability offers a way to

capture the idea of epistemic success of classifications in a domain-independent way, and it
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also gives us a way to judge the degrees of our epistemic certainty of natural kinds.

Lastly, I discussed the limitations to our ability to filter natural kinds by Kleinberg’s

Impossibility Theorem in Section 6. There are three basic properties of classifications that

hold in both clustering algorithms and in what we would require in a realist account of

classification, but I argued that richness is a property that can be relaxed and still remain

consistent with the belief that it is possible for us to have knowledge of natural kinds.

Aside from simply arguing in this paper that there are similarities between how philoso-

phers and computer scientists think about classification, I have tried to make the stronger

point that the comparison is genuinely consequential for both sides—that philosophical work

has implications for computer scientists, and that the work of computer scientists has im-

plications for how we philosophize about natural kinds. This paper has mainly focused on

the latter direction of influence, but it is interesting to consider what value the philosophical

literature on natural kinds offers to computer scientists. Clustering algorithms are com-

monly applied with the idea that they will reveal a “natural” grouping of data. Baked into

this belief about clustering algorithms is an unsure concept of “natural”. As Von Luxburg

wrote, “It is often presumed that for any situation where clustering may be used there is

a single ‘right’ clustering” (2012, p66). If it is the proclaimed goal of clustering algorithms

to discover a natural grouping, it seems important to know whether natural kinds exist. If

they do, it would be important for computer scientists to be clear, philosophically, about

what “natural” means in order their for clustering algorithms, in both implementation and

evaluation, to accurately coincide with such a concept. If they do not, then computer sci-

entists must be forced to revise their intentions and be clearer about what exactly is being

produced by their classification algorithms, if not what was mistakenly taken as natural.

I will leave off with a couple of thoughts on how the conversation between philosophers

and computer scientists on the issue of classification might continue as algorithms become

increasingly capable of conducting human labor. Classifications are an important part of the

natural and social sciences. In fact, it could be argued that classifications are fundamental
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to scientific understanding—we theorize in terms of kinds, and progress in scientific fields is

often taken by the revision or evolution of the kinds we adopt. If clustering algorithms engage

in classification in the same way humans do, and there is an inevitable future where clustering

algorithms improve at what they set out to do, it presents an interesting dilemma where

clustering algorithms may at some point be better classifiers than humans. If they become

better at classifying, they will also become better at science. Under these circumstances, it

seems possible to ask whether science is a kind of human labor that machines could eventually

overtake. If clustering algorithms, today, can be said to discover facts about the world,

couldn’t the clustering algorithms of tomorrow be in charge of this process of discovery?

I would argue that in order to defend against this possibility, there must be something

fundamentally human to either our process of generating classifications or of endorsing them.

It presents an interesting philosophical question regarding the limits of computation in terms

of what knowledge can be generated and what sort of epistemic authority algorithms can

potentially hold. As algorithms begin to play larger roles in the world around us, it feels

imperative that our philosophical investigations of them do as well.
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